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The precision of the neutron measurements is such that 
a small moment on iridium, 0.2-0.3 JAB, would just be 
detectable. However, it is known2-6 that there exists a 
range of compositions for these and similar compounds 
over which the Laves phase structure is found. If a 3 % 
weight loss on melting, as noted by Bozorth and co
workers, be attributed to loss of Tb then one would have 

6 J. H. Wernick and S. Geller, Trans. AIME 218, 866 (1960). 

IN this paper we shall consider the galvanomagnetic 
properties of a system of electrons in a strong elec

tric field. Sodha and Eastman1 have calculated the 
electric-field dependence of the low-magnetic-field Hall 
coefficient for the case of a simple parabolic energy 
band and scattering by acoustical phonons. 

Conwell2 has used McClure's3 solution of the Boltz-
mann equation to obtain general expressions for the 
Hall coefficient in a many-valley semiconductor in 
terms of the electron-distribution function. The condi
tions under which one may use McClure's treatment to 
describe a system of hot electrons have been discussed 
qualitatively by Conwell. 

In this treatment we separate the general Boltzmann 
equation for a many-valley semiconductor into coupled 
equations for the isotropic and anisotropic parts of the 
distribution function. The equation for the anisotropic 
part is shown to be identical with McClure's equation 
except for an additional term which is shown to be 
negligible. The equation for the isotropic part allows 
one to calculate the electric and magnetic field depend
ence of the distribution function for arbitrary fields. 

In Sec. I I , we calculate the low-magnetic-field Hall 
coefficient using the hot-electron distribution obtained 
by Reik and Riskin.4 Results are obtained for several 
current directions in silicon and germanium. In Sec. 
I l l we calculate the distribution function for hot elec
trons in high magnetic fields for acoustical phonon 
scattering. 

1 M. S. Sodha and P. C. Eastman, Phys. Rev. 110, 1314 (1958). 
2 E. M. Conwell, Phys. Rev. 123, 454 (1961). 
3 J. W. McClure, Phys. Rev. 101, 1642 (1956). 
4 H. G. Reik and H. Riskin, Phys. Rev. 124, 777 (1961). 

to do with Tbo.9lr2
7 rather than Tblr2 and a moment 

differing by some 10% from that of the ideal compound 
would be inferred. I t appears impossible to us to state 
at this time that iridium does or does not carry a small 
magnetic moment. 

7 Direct chemical analysis of the Tblr2 specimen investigated 
here gives a composition Tbi.0ilr2, which is not distinguishable, 
in our measurement, from the ideal composition. A change from 
the ideal composition of 10% Tb would, however, create fluctua
tions in the nuclear intensity which would be easily detectable. 

I. THE BOLTZMANN EQUATION 

The time-independent Boltzmann equation is given by 

e ( E + V X B ) - V K / = C / , (1) 

where E and B are the electric and magnetic fields, C is 
the collision operator, and K and V are the wave vector 
and velocity, respectively. We consider a many-valley 
semiconductor with ellipsoidal constant energy sur
faces. In the coordinate system of the principal axes 
of the valley under consideration, the electron energy 
is given by 

e=Kx*/2tnx+ Ky*/2my+K,*/2m,. (2) 

Transforming these ellipsoidal surfaces into spheres, 
Eqs. (1) and (2) become 

e ( E ' + V ' X B ' ) - V K ' / = C Y ; €=K'V2m0 , 

where 

K' = aK, B'=RB, E ' = a E , V ' = K ' / w 0 , 
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We now separate / into two parts S and A : f=S+A, 
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The Hall coefficient in a many-valley semiconductor is calculated for high electric fields and is shown 
to be independent of the electric field. For silicon we find i?ioo/i?m = 0.9 and i?no/i?m = 0.85, where RIQQ 
is the Hall coefficient for the current in the [100] direction, etc. For germanium we find jRin/i?ioo==0.68. 
Distribution functions for hot electrons in high magnetic fields are calculated at high and low temperatures 
for acoustical phonon scattering. 
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where S is the isotropic part of the expansion of / in 
spherical harmonics and A is the anisotropic part. 
Separating Eq. (3) into isotropic and anisotropic parts 
we find 

6E'-VK t f+An{eE'-VK '4} 

+ (e/mo) K 'X B' • VK>A = &A , (4) 

Is{eW-VK'A}=C'S, (5) 

where An{X} = anisotropic part of X, and Is{X} 
= isotropic part of X. We now make the following 
assumptions: 

(a) An{tfE' • VK '4 } is small; 

(b) C'A = -A/T(e). 

We shall verify a posteriori (see Appendix) that assump
tion (a) is valid. After making these assumptions, Eq. (4) 
becomes identical with McClure's linearized Boltzmann 
equation for this band structure, except that the equi
librium distribution is replaced by the more general iso
tropic function S. We find straightforwardly that 

dS 
A=-T—V 

reE'+ (e2r2M)2)B'B'-£E'+ {er/m,)WXeW-

L l+(e2r2/W)B'2 

Substituting this into Eq. (5) we find 

(6) 

2(eE')2<2r <£S71+7oW' 
I o In I M. 

3mQe1/2 deL de \ l+co 2 r 2 
= C'S, (7) 

dS 
_ r__V'. 

de 

V er 1 
eW+—VXeW 

L m0 J 

where 70 is the direction cosine of B' with respect to 
E' and o>= eW/ntQ. 

We see from Eq. (7) that when B is sufficiently small 
we can neglect a>2r2 compared to unity and we obtain 
the same S as in the absence of the magnetic field. 
A becomes simply 

(8) 

II. THE HALL COEFFICIENT 

If we limit ourselves to small magnetic fields (co2r2<<Cl) 
we need only insert the hot-electron distribution in Eq. 
(8) and, thus, calculate the current and Hall coefficient. 
We shall consider a many-valley semiconductor in a 
strong electric field. In this case Reik and Riskin4 have 
shown that the isotropic part of the distribution func
tion in each valley is approximately Maxwellian and is 
given by 

/a2 /32 7 ' 
S=ere/kTe; Te^E2( _| | _ _ 

V 
(9) 

field with respect to the ellipsoid axes. Taking into 
account the intervalley scattering to zeroth order they 
found that the number of electrons in a given valley 
is simply 

rn^l/TM, (10) 

where Ti is the temperature of the valley. 
We shall now see that the Hall coefficient is, in 

general, anisotropic, in contrast to the weak electric 
field case, and that it becomes independent of the 
electric fields for large fields. The saturation of the Hall 
coefficient for large electric fields could provide an ex
perimental method for verifying if the isotropic part of 
the distribution becomes Maxwellian at high electric 
fields. Erlbach and Gunn5 have studied the shape of the 
isotropic part of the distribution function by making 
noise experiments on hot electrons, but their experi
ments were not in the range of very large electric fields. 

We shall now outline the calculation of the Hall co
efficient. The current in a given valley is calculated by 
putting Eq. (9) into Eq. (8). Taking the longitudinal 
axis of the ellipsoid as the x axis and the transverse 
axes as y, z axes we find 

eEx yBjEj BzEy 
Vj= ni(Ti)-#ni{T?)\ 

mi L mimt mtnitJ 
(ID 

where 

(x)= f xez/2e-*/kT*de / f ez/2e~*/kT'de 

and similar equations for the y and z components. We 
consider the applied field E^ in a given direction, the 
magnetic field B perpendicular to EA, and we wish to 
calculate the Hall field in a direction Ei, perpendicular 
to EA and B. The current in each valley is resolved into 
components parallel to EA, B, and Ei, and the current is 
summed over all the valleys. We then require that the 
current in the Ei and B directions be zero, and deter
mine the Hall field in terms of the current in the EA 
direction. We neglect terms in B2 throughout. 

The calculation is simplest in silicon where we have 
two ellipsoids in each of the cube edge directions. We 
take the electric field in the [100] direction and the 
magnetic field in the [001] direction. Taking x, y, z 
axes in the [100], [010], [001], respectively, we find 

Vy=2eEJ 

Vz=0, 

'ni(n) n2(T2)~ 

mt mi 

-2e2BE> 
rniin2) n2(T2

2) n2{ri) 

mtmt mimt m? ] • (12) 

(13) 

\mx mv mz 

where ni, r± refer to the [100] valleys and n2, r2 refer 
to the remaining four valleys, since by symmetry these 
latter valleys all have the same n^ (n) and (r*2). Setting 

where ce, /5, 7 are the direction cosines of the electric 5 E. Erlbach and J. B. Gunn, Phys. Rev. Letters 8, 280 (1962). 
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Vy—Q and expressing Ex in terms of Jx, we find 

JZly 

J*B 

2«2d 

(»i/»»)<r1
s>+(tf+l)<TS

J> 

.((»1 /«2)<T1)+2K(r2))((M l /W 2)(r1)+(l + l / i r )<r 2 ) )J 
(14) 

where K=nii/mt. Taking r=At~" we obtain from Eqs. magnetic field in the Q 1 0 ] direction we find 
(9), (10), and (11) 

< T 1 , « > = ^ r ( f - j ) ( f t r 1 . 2 ) - / r ( t ) > 

{r1,2
2)=^2r(|-25)(^r1,2)-2Vr(f), 

ni/n2= (Tt/TJW^K1!'; « 2 = » / 2 ( 2 + K 1 / 2 ) . 

Substituting Eq. (15) into (14) we obtain 

jr2)=r(t)r( | -2^ 

Rx 

(15) 

3 (3+7) (5+4i r+37 4 s + 1 ) 

( l+8Z+37 2 , i + 1 ) ( 5 + 4 / Z + 3 T 2 S + 1 ) 
(21) 

where 

ne 

Ri 

r2(f-*) 
(K2s+1/2+K+l)(2+Kl/2) 

(Ks+2Km) (Ks+1+K1/2+K-~l/2) 

T = i ( l+8i<0 1 / 2 . 

Taking «?=J, K=20 we have 

^m/^ ioo=0 .68 . (22) 

(16) 
Our results imply that it should be possible to meas

ure the ratio of the effective masses by measuring the 
hot-electron Hall coefficient, but it should be re
membered that all the calculations are based on a 

With the applied electric field in the [111] direction the Maxwellian distribution function in each valley and 
fii, (n) and (n2) are the same for all valleys and the have treated intervalley scattering only to zeroth order. 
Hall field is simply 

III. LARGE MAGNETIC FIELDS 
E=(JB/ne)rRlu; R111=SK(K+2)/(2K+l)2. (17) # 

When wV cannot be neglected compared to unity 
Taking j = \ for phonon scattering and i£=5.1 for we must solve Eq. (7). Let us first consider the case of 
silicon we obtain scattering by acoustical phonons. If we assume that 

equipartition holds for the acoustical phonons and that 
-^100/^111=0.9. (18) ^ v a r i e s little over the energy of a phonon, one4,6 can 

derive the following expressions: 
If we take the electric field in the [110] direction and 
the magnetic field in the [001] direction we find 

-#no = -
(2+Ky^)(2+y) 

(K+l+Ky2s+1)(\ + l/K+y2s+1) 
(19) 

dr /S dS\-\ 
C'S= d / V ' 2 - e2( — + — ) ; r=C2/^

2 

del \kT del A 

where 
2n/Vm0

mmtkT 
Ci= 2*1 

^ ) , 

i 
i + -

3' pW deta 

C2=phiCii deta/29 /Vw0
3 / 2^rs ( J

2 

2 „ \ 2 

1+—)K-1 
2«Y 

2 * / ' 
(23) 

X 
2 - /2»\2-] 

1.31+1.61 h l .Ol f—) 
2 d \ 2 d / J 

(20) 

For ^==4, 2^= 5.1 we have 

i£iio/jRiii=0.85. 
where p is the density, Ci is the longitudinal velocity 

The anisotropy of the Hall coefficient in germanium of sound, and Sd and S u are the deformation potentials 
is greater than in silicon since K=20 for germanium, for dilation and uniaxial shear. Substituting Eq. (23) 
With the electric field in the [111]] direction and the into (7) we obtain 

5=exp! 
[-/;• 

e/kT 

e+(2C2(eE')2/3t»oC1)((6+7oVC2
2)/(e+a,2C2

2))J 
(24) 

6R. Stratton, Proc. Roy. Soc. (London) 242, 355 (1957). 
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This can be integrated to obtain 

>2 be C ~)p/2 

S-'-"i(ir) (kTY (kT)K 

Xexp 
( " 

M(&2-2C"-&o2C2
2) 

2(kT)2 ) • 
(25) 

where 

2C2(eE')2 2C2(eE')2 

6=a,2C2H , C'=yJa?CfpkT, p= , 
3moCikT 

M= I. 
3m0Ci 

*/kT de 

o e2+be+C 

IkT 

(4C-&2) 1/2 
• tan" 

/ 26-j-t) \ 
H ); 4C ' -& 2 >0 
\ ( 4 C ' - # 0 1 / 2 / 

kT \2e+b-(b2-4C'y/2\ 
•In 

(62-4C')1 / 2 l2e+&+(^2-4C /)1 ' 

2 -4C">0. 

When o>2r2 can be neglected compared to unity we 
find the well known Yanashita-Watanabe7 type solution 

S=le/kT+p¥e-*ikT. (26) 

If on the other hand w2r2 is large compared to unity 
we find from Eq. (24) that 

r-exp[-/.' de-
e/kT -i 

e+yo2pkTJ 

= le/kT+y0
2p2y°2pe~e/kT (TO^O) . (27) 

If 7o=0, Eq. (24) becomes 

r r de/kT -I 

^ ^ Jo l + ^ r / ( l + w 2 r 2 ) e J l+pkT/(l+a2T2) 

If we now neglect unity compared to a>V we find 

pkT 

1i L co2C2
2J 

(28) 

Thus, if we believe the validity of the Boltzmann 
equation8 for o>2r2»l we find that for a large magnetic 
field perpendicular to the electric field, S becomes a 
simple Maxwellian whose temperature decreases with 
increasing magnetic field. 

The condition o>2r2^>l requires enormous magnetic 
fields (see Appendix) except at very low temperatures. 
At low temperatures, however, the equipartition of 
acoustical phonons is no longer true and Eq. (23) is no 
longer valid. Stratton6 has calculated CS for acoustical 
phonon scattering and spherical constant energy sur
faces. The results can be modified by using the transi
tion probabilities for ellipsoidal energy surfaces given 
by Herring and Vogt.9 We consider the case of spherical 
constant energy surfaces for which Stratton finds 

4mC2 dr / dS\~\ 
GS= 62(5+t(2wC2)1 / 2€1 / 2—) , 

lkT(2me)1/2 del \ del \ lkT(2me)1/2 del 

r=SkTl/ScC, 

(29) 

where C is the velocity of sound and I is the mean free 
path for acoustical phonon scattering. This equation is 
only valid if e/kT^>kT/mC2 and, thus, only for electric 
fields large enough such that most of the electrons lie 
in this range. Putting Eq. (29) into (7) we find 

[ mC2 r€ 

/ 
kTJo 

e2de 

K(2mC2y-5/kT)e2'b+(5(eEl)2kT(2me)^2/4SmON. 

N=(l+y0WT2)/(l+O)2T2). 

• ] • (30) 

When we consider optical phonons it is no longer 
generally possible to replace the optical-phonon operator 
by a simple differential operator as we did in Eqs. (23) 
and (29). However, when the electric field is sufficiently 
strong most of the electrons have energies greater than 
the optical-phonon energy and one can derive a dif
ferential operator for the optical phonons. In this case 
we can again write a differential equation for 5 , but the 
equation is fairly complicated and we shall not consider 
it here. 
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APPENDIX 

We have supposed throughout that An{eE'- VK'A} is 
small. We notice that this term is at least quadratic 
in the electric field and is thus negligible for small fields. 
Thus, we need only consider the intermediate- and 
strong-field ranges. 

Assuming for simplicity that E is perpendicular to B, 

8 P. Argyres, Phys. Rev. 112, 1115 (1958). 
9 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956). 
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we find 

An{eE'-VK^} = — 
(eW)2 [dSrleoi d ( r2 \ 2eco d / r2 \ 4e d ( r \ "I 

( liYCcosfl) sin<£ — )P2
o(cos0) 

3 JeVl+cuV/ 3 deVl+coV/ J W [deL 3 JeNl+^r 2 / 

+• 
J 2 5 r 2ea 

J€2L3(1+C02T2) 
•P2

2(cos0) sin<£— 
4er 

3(l+coV) 
P 2° (cosO) . (Al) 

Comparing this with the other terms in Eq. (4) we 
find that for co2r2«l the neglect of An{eE'-VK>A) is 
equivalent to neglecting eJZl/e compared to unity for 
the cases where phonon equipartition is valid. From 
Eq. (26) we see that eEl/e^{mCi2/kT)112, while for the 

hot Maxwellian distribution, Eq. (9), we find eEl/e 
^elLl/kTe. In both cases the terms are very small com
pared to unity. When w V ^ l one can neglect the 
An{eW-VK'A} term for the high-temperature case 
(equipartition of acoustical phonons) if 

1 » 
pmCi2 

\wC2
2Ll+pkT/a)C2' a) 

1/2 (pkT/wC1?y/2(mCii/kT)m 

(l+pkT/aCf)1 
•(mC?/kT) 1/2 (A2) 

The condition a>2r2^>l is only realized in high mag
netic field in this case, since the average relaxation time 
decreases because the electrons populate higher energy 
ranges in the presence of a strong electric field. 

If we consider the number of electrons per unit energy 
range we find that the maximum of this function is dis

placed towards the higher energies because of the elec
tric field, while the magnetic field displaces the peak 
towards the thermal equilibrium value. Thus, the elec
tric field ' 'heats" the electrons while the magnetic field 
"cools" them. Similar results hold for the low-tempera
ture case. 

P H Y S I C A L R E V I E W V O L U M E 1 3 1 , N U M B E R 4 1 5 A U G U S T 1 9 6 3 

Effect of Alloying and Pressure on the Band Structure of Germanium and Silicon* 

FRANCO BASSANI AND DAVID BitusTf 

Argonne National Laboratory, Argonne, Illinois 
(Received 18 January 1963; revised manuscript received 22 April 1963) 

The pseudopotential method has been used to compute the band structure of germanium-silicon alloys 
and the band structure of germanium under high pressure. In the former case the parameters were chosen 
from a linear interpolation between the parameters used previously for pure germanium and pure silicon, 
while in the latter case a simplified expression for the pseudopotential parameters based on the orthogonalized 
plane wave method was used to estimate their variation with lattice constant. The results are in reasonable 
agreement with experimental observations on the variation with pressure and alloying of the principal 
band edges. The calculations also indicate that the first absorption peak due to direct transitions should 
have a much larger pressure coefficient in Ge than in Si. 

I. INTRODUCTION 

A VERY useful way of obtaining detailed informa-
*-*- tion on the band structure of simple semiconduc
tors has been to study the change produced in their 
physical properties by alloying one semiconductor with 
another. Johnson and Christian1 studied the change of 
the energy gap of Ge-Si alloys as a function of silicon 
concentration. The energy gap increases rapidly up to 
~ 1 5 % Si and from there on the increase is slow until 

* Based on work performed under the auspices of the U. S. 
Atomic Energy Commission. 

f Thesis student from the University of Chicago. 
1 E. R. Johnson and S. M. Christian, Phys. Rev. 95, 560 (1954); 

A. Levitas, C. C. Wang, and B. H. Alexander, ibid. 95, 846 (1954). 

the value in pure silicon is reached. Herman2 speculated 
that this result is due to the role of two different minima 
in the conduction band: up to ^ 15% Si the L\ state at 
k= (2T/O) (hhi) is the absolute minimum of the con
duction band and when more silicon is added the abso
lute minimum is shifted to a point along the [100] 
direction near the state Xi at k= (2TT/a) (1,0,0) which 
is practically insensitive to addition of silicon. This 
interpretation was confirmed most strikingly by 
Glicksman,3 who was able to determine the symmetry 
of the conduction minima for varying alloy concentra
tion from the properties of the magnetoresistance 

2 F. Herman, Phys. Rev. 95, 847 (1954). 
3 M. Glicksman, Phys. Rev. 100, 1146 (1955); 102, 1496 (1956). 


